FLEXIBLE PACKAGING APPLICATIONS FOR SINGLE USE BEVERAGE PACKS

And The Invention Of SqueezyStraw™
FLEXIBLE PACKAGING APPLICATIONS FOR SINGLE USE BEVERAGE PACKS

Flexible packaging has had an enormous impact on life in the civilized world, and it is still evolving today. Virtually every home and many businesses have some form of flexible packaging for foods and other valued products.

Yet certain key challenges remain, including some that seem disarmingly simple.

One is the challenge of creating and producing on a high-volume basis a single-serve flexible package which contains a beverage or other liquid which a consumer can drink directly from the package with no other tools, fitments, caps, valves or objects required.

We are all familiar for example with kids’ juice cartons with attached straws. These are not as easy to use or as cost efficient as flexible packages and they do not have an integral straw or similar structure.

This is the challenge which has intrigued packaging industry veteran Lew Barton for decades. Barton has been consulting on packaging and operations with many major corporations for 20 years. In that time he has been retained by, and worked on projects for, many clients in the food industry including Dow Packaging, McDonald’s Corporation, McCormick & Co., KFC, Reckitt & Benckiser (The R.T. French Company Division), YUM!, Brand Aromatics and Tetra Pak.

Before that Lew Barton was the founder and CEO of Sigma Quality Foods, a producer of single-service condiment packets and other liquid food products for the foodservice industry. This led him to think about this flexible container with integral dispensing tube quite a bit.

Today Barton has four packaging patents issued and another one pending at this time. One of his latest inventions is the (patented invention – see next page):
FLEXIBLE CONTAINER WITH INTEGRAL DISPENSING TUBE,

...otherwise known as SqueezyStraw™ (see illustration), featuring a single-serve dispensing pouch with its own built-in, integral sipping straw.

But before getting in to those details, it will help to have a general understanding of the evolution of flexible packaging and consumer beverage containers.

FLEXIBLE PACKAGING MATERIALS SUMMARY

The modern forms of flexible packaging materials developed rapidly during the 20th Century, as initially paper, with adhesives, was used for wrapping and sealing products. Waxed paper also became popular, making heat sealing possible for the first time.

Cellophane™, which was originally invented in France and first produced in the US by DuPont, was basically transparent paper, but heat-sealable versions were created. The first sealable coatings on Cellophane™ were nitrocellulose, and later Saran™ (PvDC) was developed, making that product a popular and widely used flexible packaging material.

Intensive research and development in all fields occurred during the World War II period, and many of the polymers that are used today were developed in their initial forms at that time. Polyethylene (PE) became the single most widely used resin due to its broad range of applications. PE film was produced by “blowing the bubble” – in other words PE resin was heated and pressure fed into an annular die until molten, and the film coming up from that die formed a bubble which was then drawn up through a cooling tower. Adjustments in the die opening, specific pneumatic pressure and mechanical propulsion determined the gauge of the film and the speed with which it was blown.
PE was also cast into film, in which case the die was flat and the film was force-fed through the die by heat and pressure to form a uniform sheet, the size of the die width. Further, PE was extrusion coated, in which case a die, such as used in cast applications, would be mounted above the base material or substrate, and the PE would be extruded directly onto the substrate.

Applications for PE grew exponentially, as well as variations of PE from its original homopolymer to include copolymers with EVA (ethylene vinyl acetate) and EMA (ethylene methyl acrylate), as well as acid copolymers such as EMAA (ethylene methacrylic acid) and ionomers such as Surlyn®. All had significantly improved performance characteristics compared to PE.

Rapid expansion of the technology produced many products that were laminations and extrusions, giving us today a plethora of materials to choose from to match the packaging application.

CONSUMER BEVERAGE TRENDS

Convenience is the keyword in consumer goods today. The consumer has shown a willingness to pay a premium for packaging that delivers convenience. Easy-open, pre-portioned, ready-to-use, microwavable (dual-ovenable), etc. – all of these features have proven to be popular with consumers today.

Much has been written about the lifestyle changes that have occurred since World War II, and these changes have propelled the marketing of products to address consumer demands.

Beverages have been among the products that have been subjected to the most dramatic of these changes. Bottled water for personal use was virtually unknown in this country 40 years ago. Commercially produced and packaged iced tea was also a new category. Bottled coffee products, energy drinks, juice blends, and other beverages have all added to the multiple choices consumers have.

Alcoholic beverages have also seen big changes. There are today many more niche brands in beer and spirits than have ever existed before, as well as pre-made drink mixes.

Today’s marketplace is a virtual bazaar of goods that cater to every facet of the consumer demographics, in product, flavor, type (caf or decaf, gluten free, etc.), color, country of origin and dozens of other micro-options.

Add to this proliferation of products the wide variety of convenience packaging for these beverages, and you have an almost unlimited number of possibilities.

And possibly the single most important aspect of convenience packaging today is single serve, personal use, individual portions.
The size of such a package depends on the product. We are all familiar with single serve packets of ketchup. The use there is generally considered to be fractional ounce portions (1/2 oz., 11 gram, etc.).

Beverages are another matter and as such the general paradigm seems to be approximately 3 ounces. It is this category that SqueezyStraw™ is focused on.

The 3 oz. (+/-) beverage pack has been marketed in many versions and packages, all of which leave a great deal to be desired.

For example, the juice box is expensive, awkward to handle and, depending on the specific style, either difficult or inconvenient to use. The juice box also requires a very substantial capital investment in machinery and equipment. In one type the user is required to open the gabled top, usually a difficult task, in order to acquire a clean and accessible opening, and then either use a straw (sometimes supplied separately) or a cup.

In another form there is a pre-punched hole covered by a film or foil in the top of the box into which a pointed straw (usually affixed to the package) is inserted, puncturing the hole and allowing the user to drink the contents through the straw. This form adds to the cost by three factors: 1) the cost of the straw, 2) the cost of affixing the straw to the package, and 3) the cost of the hole punch and the additional film or foil covering the hole.

Another version of the juice box uses a rigid plastic fitment with a cap on it. This version is even more expensive due to the cost of the parts (fitment and cap) plus the cost of installing those parts into the juice box.

The rectangular pouch pack is an alternative to the juice box (see illustration at right):

But again the issues are cost and convenience. This type of pouch, generally produced on equipment that indexes the packages horizontally while they are oriented vertically, almost always requires the same additional parts (straws, fitments, caps, etc.) as the juice box. As such the cost is relatively high.

The SqueezyStraw™ Solution.

Having surveyed the market, and using the knowledge he acquired through years of experience in the packaging industry, Barton invented the ultimate package for this purpose, the SqueezyStraw™.

First, due to its all-film construction with no additional parts, the SqueezyStraw™ is **ultra-low cost** (more details to follow).
Secondly, using **horizontal thermo-form / fill / seal equipment** for this application is a new and unique method that produces packages with great seal integrity and high volume at low cost-per-unit manufacturing figures.

The cost is so low that it has been suggested that this new technique may have great potential for delivering water and other critically needed liquid food products to countries and populations that are in serious need of such help but the current costs are prohibitive.

(See FAQ and other Data on next page)
FURTHER DATA (FAQ)

1) How will the consumer use SqueezyStraw™? Will there be an easy tear on top for consumer to open and drink it?

Yes, the straw extension can be made with an easy-open feature such as a tear notch or a laser score. The ease of use is a major benefit to consumer use. There are no other parts or pieces for the consumer to add or handle – no separate straw, no cap to take off, etc.

2) How does SqueezyStraw™ work and how is it more beneficial than other options of drinking that are available in market?

SqueezyStraw™ works simply by opening the top of the straw extension, squeezing and sipping the enclosed liquid. Also the pending application has an added feature of an actual straw-like segment (see drawing at right) which will make it even easier for the consumer to recognize and use. The major benefits are ultra-low cost and ease of use and improved merchandising (rack hanger versions can easily be created for various merchandising needs).

3) Is SqueezyStraw™ available in stand up pouch/Doypack format too?

Yes, the pending application includes methods for manufacturing with Doyen-type bottom gusset stand-up pouch configuration (see illustration at right).

4) What would be the filling method - how to fill it? Will this be capable of hot fill process?

Yes, SqueezyStraw™ is capable of hot fill. The packaging method is to use thermoform/fill/seal equipment, such as supplied by Reiser and others. In this case the pouch is first formed on a horizontal bed, then filled by a liquid filler and sealed and diecut into shape.

5) Will any form-fill-seal machine be capable for this pouch?

Yes, every thermoform/fill/seal machine we are aware of can do this, provided it is a true “thermoforming” machine. Contact us if you have questions.
6) How is the license going to be paid?

License fees will depend on size of package and volume of sales, i.e., the licensing fee will be US$/unit, varying from as low as US$0.006/unit (small size, high volume) and up.

7) How much would a typical 3 oz. beverage pouch cost to manufacture?

Here are our current estimates, based on U.S. costs, for a 3-oz. pouch, printed on face panel, in large volumes:

- Packaging film cost estimate: unprinted US$ 0.15/mil/MSI. Printed + US$ 0.15 / MSI for print.

- Typical 3-oz. size (3 3/4”x 4 1/4”) plus straw extension, print face panel only, estimated cost of pouch only: US$ 0.015 (less than two cents each)

- Additional costs: Licensing fee, production costs, product (beverage etc.) cost, and other details.

For more information about SqueezyStraw™ and how to license this technology, contact:

Barton Group, Inc.
81 Newtown Lane (#309)
East Hampton, New York 11937
Tel: 917-647-6388
Email: lb@consultbarton.com

Or visit our website: http://www.squeezystraw.com